A-Efficient Block Designs with Unequal Block Sizes for Comparing Two Sets of Treatments*

Seema Jaggi
IASRI, New Delhi

Abstract

SUMMARY This article studies an experimental setting in which it is desired to make comparisons between treatments belonging to two sets, each set consisting of two or more treatiments. The experimental units are arranged in blocks of varying sizes. Some general methods of construction of block designs for comparing two sets of treatments are given. Under this setting a sufficient condition is obtained to study the A-efficiency of these designs. A list of some of the designs obtained along with the parameters and A-efficiencies is also presented.

Key words : Balanced bipartite block designs; PBIB designs; BTIB designs; A-efficiency.

1. Introduction

A number of block designs are being used in agricultural experiments where the experimental situation requires one-way elimination of heterogeneity. In one of the experiments conducted at a Research Institute, 17 maize hybrids were required to be tested with 4 check (control) varieties of maize before making any recommendation for the 17 new hybrids. A similar type of situation arises when there are a number of equally popular or prevalent varieties under cultivation in the region, each having its own merit which can be used as controls for testing the new varieties, so that after the experiment is conducted one has enough freedom and scope in interpreting the performance of the varieties and identifying suitable varieties to be released for cultivation. It has been observed that such trials are generally being conducted in Randomized block design (RBD) with suitable number of replications. In the hybrid maize experiment also the varieties or treatments were laid out in a RBD with three replications.

[^0]Using an RBD with 21 treatments is generally not desirable because it is not possible to form large homogeneous blocks to accomodate 21 treatments and the intra-block variances also become very large resulting thereby in a loss of efficiency. Among the incomplete block designs, a balanced incomplete block (BIB) design with parameters $v=b=21, r=k=5, \lambda=1$ [for definition and parameters see e.g. Dey [6]] may be used instead of an RBD. For estimating all the $\left({ }^{21} \mathrm{C}_{2}\right)=210$ elementary contrasts, it is well known that a BIB design is most efficient. In fact, a BIB design, whenever existent, is universally optimal over $D(v, b, k)$, where $D(v, b, k)$ denotes the class of all connected designs with v treatments, b blocks and block size k. However, the interest of the experimenter is to make only the paired comparisons between 17 hybrid varieties of maize and 4 controls. In other words the interest is in making only $68(17 \times 4)$ paired comparisons. When the interest of the experimenter is in making paired comparisons on a subset of all the possible paired comparisons and when the other comparisons [e.g. the $\left({ }^{17} \mathrm{C}_{2}\right)=136$ paired comparisons between 17 hybrid varieties and $\left({ }^{4} \mathrm{C}_{2}\right)=6$ paired comparisons between control treatments] are not of any interest to the experimenter and do not have any role in the choice of the designs, then the designs useful for making all the possible paired comparisons efficiently do not remain so in the situation where only subset of paired comparisons are to be estimated.

Therefore, the BIB design does not remain optimal in this situation. Further, sometimes the nature of the experimental material may be such that it may not allow the blocks to be of equal sizes. For example when there are irregular fields or in hilly areas, the block designs having unequal block sizes can be adopted. The need for blocks of unequal sizes in biological experiments has been noted by Pearce [12]. This article makes an attempt to address this problem of obtaining efficient incomplete block designs with unequal block sizes for making paired comparisons between test treatments and control treatments when other comparisons between test treatments and control treatments are not of any interest to the experimenter and do not have any role in the choice of the design. The designs with unequal block sizes bring in the problem of heteroscedasticity in the model i.e. the intra-block variances become proportional to the block sizes. But here we consider the designs whose block sizes do not vary widely and also the number of block sizes are small. We would assume therefore that the intra-block variances are constant and the model is homoscedastic.

We now formulate the problem algebraically. Consider an experimental setting where $v=v_{1}+v_{2}$ treatments are divided into two disjoint sets, one set T of cardinality v_{1} called test treatments (herein after called tests) denoted by $1,2, \ldots, v_{1}$ and the other set S of cardinality v_{2}, called control treatments
(herein after called controls) denoted by $v_{1}+1, \ldots, v_{1}+v_{2}$ such that $\mathrm{T} \cap \mathrm{S}=\varphi$ and these treatments are to be arranged in incomplete block design with b blocks and varying block sizes. All the comparisons of two treatments, one from T and one from S are important, but comparisons within T or within S are of less consequence i.e. the interest is in estimating the contrasts of the type $\left(\tau_{t}-\tau_{s}\right), t \varepsilon T, s \varepsilon S$, which can be put in the form $\mathrm{P}^{\prime} \tau$ where

$$
\begin{equation*}
P^{\prime}=\left[1_{v_{2}} \otimes I_{v_{1}}:-I_{v_{2}} \otimes 1_{v_{1}}\right] \tag{1.1}
\end{equation*}
$$

is a $v_{1} v_{2} \times v$ matrix and $\tau=\left[\tau_{1}, \ldots, \tau_{v_{1}}, \tau_{v_{1}+1}, \ldots, \tau_{v}\right]^{\prime}$ is a $v \times 1$ vector of effects of tests and controls. 1_{u} is a ux 1 vector of ones, I_{u} is an identity matrix of order \mathbf{u} and \otimes denotes the kronecker product of matrices.

A block design with b blocks of different block sizes will be used for the present setting. The model of response is given by

$$
\begin{equation*}
Y_{i j u}=\mu+\tau_{i}+\beta_{j}+e_{i j u} \tag{1.2}
\end{equation*}
$$

where $Y_{i j u}$ is the observation on treatment i in the plot u of block j, τ_{i} represents the effect of treatment i, β_{j} is the effect of block j, μ is the general mean and $\mathrm{e}_{\mathrm{iju}}$'s are uncorrelated random variables with mean zero and common variance σ^{2}. For a given block design, let $\mathrm{N}=\left(\left(\mathrm{n}_{\mathrm{ij}}\right)\right)$ denote a vxb incidence matrix for $i=1, \ldots, v ; j=1, \ldots, b$. N can also be written in partitioned form as

$$
\mathbf{N}=\left[\mathbf{N}_{1}: \mathbf{N}_{\mathbf{2}}: \ldots: \mathbf{N}_{\mathrm{p}}\right]
$$

where $N_{1}, 1=1, \ldots, p(\leq b)$ is the incidence matrix of the $1^{\text {th }}$ part of the design i.e. the one with b_{1} blocks of size $k_{1}, \sum_{l=1}^{p} b_{1}=b$. The row sums of N are ($r^{\prime}, r_{0}^{\prime}$), where $r^{\prime}=\left(r_{1}, \ldots, r_{v_{1}}\right)$ are the replication numbers of the tests and $r_{0}^{\prime}=\left(r_{v_{1}+1}, \ldots, r_{v}\right)$ are the replication numbers of the controls. The column sums of N are $k^{\prime}=\left(k_{1} 1_{b_{1}}^{\prime}, \ldots, k_{p} 1_{b_{p}}^{\prime}\right)$, where k is the vector of block sizes and $\sum_{i=1}^{v} r_{i}=\sum_{i=1}^{p} b_{1} k_{1}=n$, the total number of observations.

Let $D\left(v_{1}, v_{2}, b, k_{1}, \ldots, k_{p}\right)=D$ denote the class of all connected designs in v_{1} tests, v_{2} controls arranged in b blocks such that b_{1} blocks are of size k_{1}, such that either all the controls appear together equally frequently in a block
or do not appear at all. Also $D_{0}\left(v_{1}, v_{2}, b, k_{1}, \ldots, k_{p}\right)=D_{o}$ denotes the subclass of designs in D which are binary in tests. In order to study the A -efficiencies of the designs, the design is to be chosen from D which attains the minimum of $\sum_{t \in T} \sum_{s \in S} \operatorname{Var}\left(\hat{\tau}_{d t}-\hat{\tau}_{d s}\right)=\sigma^{2}$ trace $\left(P^{\prime} C_{d} P\right)$ as d varies over all D. Here $\hat{f}^{1 \in T} \sum_{s \in S}$ $\left(\hat{\tau}_{\mathrm{dt}}-\hat{\tau}_{\mathrm{ds}}\right)$ denotes the BLUE of ($\tau_{\mathrm{dt}}-\tau_{\mathrm{ds}}$) under the design $\mathrm{d}, \mathrm{C}_{\mathrm{d}}$ is the information matrix pertaining to the contrasts of interest and σ^{2} is the error variance per plot. A design which attains this minimum is called an A-optimal design.

The purpose of the present article is to investigate the optimality aspects of designs for making paired comparisons between tests and controls. The concept of Balanced Bipartite Block (BBPB) designs of Kageyama and Sinha [9] has been extended and Balanced Bipartite block designs with unequal block sizes (BBPBUB) have been defined. In section 3 some general methods of construction of BBPBUB designs have been given. The results on A-optimality of the BBPBUB designs have been-described in section 4 and A-optimality of some of the designs constructed is also investigated. For designs which are not A-optimal, A-efficiency has been worked out. A list of some of the BBPBUB designs giving A-efficiencies is also prepared.

2. Some Preliminaries

The problem of obtaining optimal incomplete block designs for making test treatments-control comparisons has been extensively studied by several researchers [see e.g. Hedayat, Jacroux and Majumdar [8] for an excellent review]. For the many controls situation which is the subject of discussion in the present article, Kageyama and Sinha [9] defined under the proper setting BBPB designs, extending the concept of Balanced treatment incomplete block (BTIB) designs for single control case. Kageyama and Sinha [9] and Sinha and Kageyama [13] have given some systematic methods of constructing BBPB desigus together with tables of these designs. Majumdar [10] obtained sufficient conditions for a proper block design to be A-optimal for estimating differences of two treatments, one from each set, for the experimental situations with blocks of small size, assuming the design to be binary in tests as well as controls and under some assumptions of orthogonality for the experimental situations with large block sizes.

For comparing a set of tests to a single control in unequal blocks, the concept of Balanced treatment incomplete block designs with unequal block sizes (BTIUB) was given by Angelis and Moyssiadis [1]. Using the definition
of BTIUB designs and BBPB designs, the definition of Balanced bipartite block designs with unequal block sizes (BBPBUB) have been introduced here.

Let $\lambda_{\text {liir }}$ denote the number of times the pair of treatments $i \neq i^{\prime}=1, \ldots, v$ appear together in the block in the $1^{\text {th }}$ part of the design. Let

$$
\begin{aligned}
& f_{t s}=\sum_{\mathrm{l}=1}^{\mathrm{p}} \frac{\lambda_{\mathrm{lts}}}{\mathrm{k}_{\mathrm{l}}}, \mathrm{t}=1, \ldots, \mathrm{v}_{1} ; \mathrm{s}=\mathrm{v}_{1}+1, \ldots, \mathrm{v} \\
& \mathrm{f}_{\mathrm{tr}^{\prime}}=\sum_{\mathrm{l}=1}^{\mathrm{p}} \frac{\lambda_{\mathrm{ltt}^{\prime}}}{\mathrm{k}_{\mathrm{l}}}, \mathrm{t} \neq \mathrm{t}^{\prime}=1, \ldots, \mathrm{v}_{1} \\
& \mathrm{f}_{\mathrm{ss}}=\sum_{\mathrm{l}=1}^{\mathrm{p}} \frac{\lambda_{\mathrm{lss}^{\prime}}}{\mathrm{k}_{1}}, \mathrm{~s} \neq \mathrm{s}^{\prime}=\mathrm{v}_{1}+1, \ldots, \mathrm{v}
\end{aligned}
$$

Definition 2.1. A block design is called a Balanced Bipartite Block design with unequal block sizes (BBPBUB) if
i) for every $t \in\left\{1,2, \ldots, v_{1}\right\}$ and $s \in\left\{v_{1}+1, \ldots, v\right\}, f_{t s}=f_{0}$ for some constant f_{0},
ii) for every $t \neq t^{\prime} \in\left\{1,2, \ldots, v_{1}\right\} f_{\mathfrak{u}^{\prime}}=f_{1}$ for some constant f_{1},
iii) for every $\mathrm{s} \neq \mathrm{s}^{\prime} \in\left\{\mathrm{v}_{1}+1, \ldots, v\right\}, \mathrm{f}_{\mathrm{s}^{\prime}}=\mathrm{f}_{2}$ for some constant f_{2}.

The information matrix C of the design for estimating the treatment effects is given by

$$
C=\left[\begin{array}{cc}
\left(a_{1}-f_{1}\right) I_{v_{1}}+f_{1} 1_{v_{1}} 1_{v_{1}}^{\prime} & f_{0} 1_{v_{1}} 1_{v_{2}}^{\prime} \tag{2.1}\\
f_{o} 1_{v_{2}} 1_{v_{1}}^{\prime} & \left(a_{2}-f_{2}\right) I_{v_{2}}+f_{2} 1_{v_{2}} 1_{v_{2}}^{\prime}
\end{array}\right]
$$

which is positive semi-definite with zero row (column) sums and a_{1}, a_{2} are some scalar constants. It will be assumed throughout that the design is connected. The analysis of these designs is straight forward like any other general block design making use of the above C matrix. When $p=b$, all the b blocks of the design would be of distinct sizes, for $p=1$, a BBPBUB design as defined above is a BBPB design and for $\mathrm{p}=1, \mathrm{v}_{2}=1$, a \cdot BBPBUB design reduces to a BTIB design of Bechhofer and Tamhane [2].

3. Methods of Construction of BBPBUB Designs

The purpose of this section is to describe some methods of constuction of BBPBUB designs supported with examples. The designs are obtained by
using partially balanced incomplete block (PBIB) designs with two associate classes and cyclic designs [for definitions, see e.g. Dey [6]].

3.1 Using PBIB designs

This method extends the method of construction of variance balanced (VB) designs of Gupta and Jones [7] to obtain BBPBUB designs. The method is general in nature in the sense that one can have many distinct block sizes.

For $\mathrm{l}=1, \ldots, \mathrm{p}$ let N_{l} be the incidence matrix of a PBIB design with two associate classes and with parameters $v_{1}, b_{1}, r_{p}, k_{1}, \lambda_{11}, \lambda_{12}, m, n$. Let v_{2} be the number of controls to be added. If

$$
\frac{\sum_{1=1}^{p} w_{1} \lambda_{11}}{k_{1}+j_{1} v_{2}}=\frac{\sum_{1=1}^{p} w_{1} \lambda_{12}}{k_{1}+j_{1} v_{2}}
$$

where j_{1} is non-negative integer and w_{1} are the weights, then

$$
N=\left[\begin{array}{ccccccc}
l_{w_{1}}^{\prime} & \otimes N_{1} & \ldots & 1_{w_{1}}^{\prime} & \otimes & N_{1} \ldots & l_{w_{p}}^{\prime} \tag{3.1}
\end{array}{ }_{c}^{\prime} \otimes N_{p}\right]
$$

is the incidence matrix of a BBPBUB design with parameters $v_{1}^{*}=v_{1}, v_{2}^{*}=v_{2}, r^{*}=\left[\left(\sum_{i=1}^{p} w_{1} r_{i}\right) 1_{v_{i}}^{\prime},\left(\sum_{i=1}^{p} w_{1} j_{1} b_{1}\right) 1_{v_{2}}^{\prime}\right]^{\prime}, k^{*}=\left(k_{1}^{*}, \ldots, k_{p}^{*}\right)^{\prime}$, $k_{1}^{*}=\left(k_{1}+j_{1} v_{2}\right) 1_{b_{1}, w_{1}^{\prime}}^{\prime}, b^{*}=\sum_{1=1}^{p} w_{1} b_{1}$. For illustration purposes we have studied only those designs for which $w_{1}=1 \forall 1=1, \ldots, p$ and $j_{1}=0$ or $1 \forall \mathrm{l}=1, \ldots, \mathrm{p}$ and $\mathrm{p}=2$. The information matrix can be obtained easily using the above incidence matrix.

Remark 3.1.1: If $\mathrm{k}_{1}+\mathrm{j}_{1} \mathrm{v}_{2}=\mathrm{k}$ (say) for all $\mathrm{l}=1, \ldots, \mathrm{p}$, then the method reduces to constructing proper BBPB designs.

Example 3.1.1. : Consider a Semi-regular Group Divisible (SRGD) design SR2 [Clatworthy [3]] with parameters $v_{1}=4, b_{1}=8, r_{1}=4, k_{1}=2, m=2, n=2$, $\lambda_{11}=0, \lambda_{12}=2$ and another regular GD design R1 with $\mathrm{v}_{1}=4, \mathrm{~b}_{2}=8, \mathrm{r}_{2}=4, \mathrm{k}_{2}=2, \mathrm{~m}=2, \mathrm{n}=2, \lambda_{21}=2, \lambda_{22}=1$. The design obtained by taking the blocks of these two designs together and augmenting two new treatments ($\mathrm{v}_{2}=2$) in each block of the first design results in a BBPBUB
design with parameters $\mathrm{v}_{1}^{*}=4, \mathrm{v}_{2}^{*}=2, \mathrm{r}^{*}=81_{6}^{\prime}, \quad \mathrm{k}^{*}=\left[41_{8}^{\prime}, 21_{8}^{\prime}\right]^{\prime}$, $\mathrm{b}^{*}=16$. The design is
$(1,2,5,6) ;(3,4,5,6) ;(4,1,5,6) ;(2,3,5,6) ;(1,2,5,6) ;(3,4,5,6)$; $(4,1,5,6) ;(2,3,5,6) ;(1,3) ;(2,4) ;(2,4) ;(1,3) ;(1,2) ;(3,4) ;(1,4) ;$ $(2,3)$.

3.2 Using Cyclic Designs

Consider a cycle of α initial blocks such that $\alpha_{1}(>0)$ are of size k_{1} $(1=1, \ldots, p)$ and $\sum_{\mathrm{l}=1}^{p} \alpha_{1}=\alpha$. The α cycles when developed mod v_{1} form a pairwise balanced design. Let λ_{ltt}, be the frequency of the $\mathrm{tt}^{\text {th }}$ pair of treatments in the $1^{\text {th }}$ cycle of the design. Augmenting v_{2} controls j_{1} times in all the blocks of size k_{1}, j_{2} times in the blocks of size k_{2} and so on, j_{p} times in the blocks of size k_{p}, such that $\frac{\sum_{1=1}^{p} w_{1} \lambda_{1 t^{\prime}}}{k_{1}+j_{1} v_{2}}=$ constant for all $t, t^{\prime}=1, \ldots, v_{1}$, results in a BBPBUB design with block sizes $\mathrm{k}^{*}=\left(\mathrm{k}_{1}^{* \prime}, \ldots, \mathrm{k}_{\mathrm{p}}^{*}\right), \mathrm{k}_{\mathrm{l}}^{*}=\left(\mathrm{k}_{1}+\mathrm{j}_{1} \mathrm{v}_{2}\right)$, where j_{l} is non-negative integer such that $\sum_{l=1}^{p} j_{1} \neq 0$ and w_{1} are the weights.

Remark 3.2.1: Here if $k_{1}+j_{1} v_{2}=k$ (say) for $1=1, \ldots, p$, then the method reduces to constructing proper BBPB designs.

Example 3.2.1 : Consider the cyclic design with initial blocks $(1,2,3,5)$ and $(1,4)$ which are to be developed $\bmod 8$. Augmenting $v_{2}=4$ controls once in the blocks of size 2 i.e. $j_{1}=0, j_{2}=1$ and then taking two copies of design from first block i.e. $w_{1}=2$ and three copies of the design from second block i.e. $w_{2}=3$, results in a BBPBUB design with $\mathrm{v}_{1}^{*}=8, \mathrm{v}_{2}^{*}=4, \mathrm{r}^{*}=\left[141^{\prime}{ }_{8}, 241_{4}^{\prime}\right]^{\prime}$ and $\mathrm{k}^{*}=\left[41_{16}{ }^{\prime}, 61_{24}{ }^{\prime}\right]$.

4. A-optimality of BBPBUB Designs

This section is devoted to obtain a sufficient condition for a block design to be A-optimal for making paired comparisons between tests and controls. The interest here is to minimize the average variance of the BLUE of the parametric contrasts of interest, i.e. trace ($\mathrm{P}^{\prime} \mathrm{C}_{\mathrm{d}}^{-} \mathrm{P}$). Because of large variety
of information matrices C_{d} among which the choice of an A-optimal design is to be made, the minimization problem becomes difficult to handle. We therefore make use of an intermediate device i.e. the averaged version M_{d} of C_{d} over all permutations $v_{1}!v_{2}$!.

Lemma 4.1 : The matrix M_{d} obtained by averaging information matrix C_{d} separately over treatments $1, \ldots, v_{1}$ and $v_{1}+1, \ldots, v$ is of the form

$$
M_{d}=\left[\begin{array}{cc}
\left(\bar{a}_{1}-f_{1}\right) I_{v_{1}}+f_{1} 1_{v_{1}} 1^{\prime}{ }_{v_{1}} & \bar{f}_{0} 1_{v_{1}} 1_{v_{2}}^{\prime} \tag{4.1}\\
\bar{f}_{0} 1_{v_{2}} 1^{\prime}{ }_{v_{1}} & \left(\bar{a}_{2}-\bar{f}_{2}\right) I_{v_{2}}+\bar{f}_{2} 1_{v_{2}} 1_{v_{2}}^{\prime}
\end{array}\right]
$$

with

$$
\begin{aligned}
& \bar{a}_{1}=\frac{1}{v_{1}} \sum_{t=1}^{v_{1}} \sum_{l=1}^{p}\left[n_{t l}-k_{l}^{-1} n_{t l}^{2}\right] ; \bar{f}_{1}=-\frac{1}{v_{1}\left(v_{1}-1\right)} \sum_{t \neq t^{\prime}}^{v_{1}} \sum_{l=1}^{p} k_{l}^{-1} \lambda_{l t^{\prime}} ; \\
& f_{o}=-\frac{1}{v_{1} v_{2}} \sum_{l=1}^{p} k_{l}^{-1} \sum_{t=1}^{v_{1}} \sum_{s=v_{1}+1}^{v} \lambda_{l \mathrm{l}} ; \bar{a}_{2}=\frac{1}{v_{2}} \sum_{s=v_{1}+1}^{v} \sum_{l=1}^{p}\left[n_{s l}-k_{l}^{-1} n_{s l}^{2}\right] ; \\
& \mathrm{f}_{2}=-\frac{1}{\mathrm{v}_{2}\left(\mathrm{v}_{2}-1\right)} \sum_{\mathrm{s} \neq \mathrm{s}^{\prime}}^{\mathrm{v}} \sum_{\mathrm{l}=1}^{\mathrm{p}} \mathrm{k}_{1}^{-1} \lambda_{1 \mathrm{ss}}
\end{aligned}
$$

Lemma 4.2 : [Majumdar, [10]]. Suppose Θ is a convex real valued possibly infinite function on the set of all non-negative matrices and Θ is invariant under permutations i.e. if $Q(\pi)$ be the permutation matrix, $\Theta\left[Q(\pi) C_{d} Q(\pi)^{\prime}\right]=\Theta\left(C_{d}\right)$. Then for $d \in D, \Theta\left(C_{d}\right) \geq \Theta\left(M_{d}\right)$ and hence Trace $\left(\mathrm{P}^{\prime} \mathrm{C}_{\mathrm{d}}^{-} \mathrm{P}\right) \geq$ Trace $\left(\mathrm{P}^{\prime} \mathrm{M}_{\mathrm{d}}^{-} \mathrm{P}\right)$.

Lemma 4.3 : Let $\mathrm{d} \in \mathrm{D}$ be a design which is not binary in test treatments. Then there exists $d^{*} \in D_{o}$ which is binary in test treatments with $r_{d * s}=r_{d s}$, for $s=v_{1}+1, \ldots, v$, where $r_{d s}=\sum_{j=1}^{b} n_{d s j}$ and which satisfies $\Theta\left(P^{\prime} M_{d *}^{-} P\right) \leq \Theta\left(P^{\prime} M_{d}^{-} P\right)$ and hence

$$
\text { Trace }\left(P^{\prime} M_{d^{*}} P\right) \leq \operatorname{Trace}\left(P^{\prime} M_{d}^{-} P\right)
$$

Lemma 4.4 : For $\mathrm{d} \in \mathrm{D}$,

$$
\begin{equation*}
\operatorname{Trace}\left(P^{\prime} M_{d}^{-} P\right)=\frac{v_{2}\left(v_{1}-1\right)}{\bar{a}_{1}-\bar{f}_{1}}+\frac{v_{1}\left(v_{2}-1\right)}{\bar{a}_{2}-\bar{f}_{2}}+\frac{v_{2}}{\bar{a}_{1}+\left(v_{1}-1\right) f_{1}} \tag{4.2}
\end{equation*}
$$

The minimization of this trace expression (4.2) becomes very difficult to handle as it involves minimization of a polynomial of order four. Therefore a condition is imposed that whenever any control treatment appears in a block, all the remaining ($v_{2}-1$) controls appear in that block equally frequently. Therefore for the class of designs considered here

$$
\begin{aligned}
& \sum_{l=1}^{p} k_{1}^{-1} \sum_{s=v_{1}+1}^{v} n_{s l}^{2}=v_{2} \sum_{l=1}^{p} k_{l}^{-1} n_{o l}^{2} ; \\
& \sum_{s=v_{1}+1}^{v} \sum_{l=1}^{p} n_{s l}=v_{2} \sum_{l=1}^{p} r_{o l} ; \\
& \sum_{l=1}^{p} k_{l}^{-1} \sum_{s \neq s^{\prime}=v_{1}+1}^{v} \lambda_{l s s^{\prime}}=v_{2}\left(v_{2}-1\right) \sum_{l=1}^{p} k_{l}^{-1} n_{o l}^{2}
\end{aligned}
$$

where $r_{o l} \geq 0$ is the replication number of the control treatment in the blocks of size $k_{1}, 1=1, \ldots, p$.

Lemma 4.5 : For a design $d \in D_{o}$ and fixed $r_{o l}$, Trace $\left(P^{\prime} M_{d}^{-} P\right)$ is minimized when $n_{o l}$ is either $\left[r_{o l} / b_{1}\right]$ or $\left[r_{o l} / b_{1}\right]+1$.

Proof: For fixed $r_{o l}$ and $d \in D_{o}$

$$
\begin{aligned}
& \operatorname{Trace}\left(P^{\prime} M_{d}^{-} P\right)=\frac{v_{l}}{\sum_{l=1}^{p} r_{o l}-v_{2} \sum_{l=1}^{p} k_{l}^{-1} n_{o l}^{2}}+\frac{v_{1}\left(v_{2}-1\right)}{\sum_{l=1}^{p} r_{o l}} \\
& +\frac{v_{1} v_{2}\left(v_{1}-1\right)^{2}}{v_{1} \sum_{l=1}^{p} \frac{\left(b_{1} k_{l}-v_{2} r_{o l}\right)\left(k_{1}-1\right)}{k_{l}}-v_{2} \sum_{l=1}^{p} r_{o l}+v_{2}^{2} \sum_{l=1}^{p} k_{l}^{-1} n_{o l}^{2}}
\end{aligned}
$$

$$
\text { Let } \sum_{l=1}^{p} k_{l}^{-1} n_{o l}^{2}=Q
$$

Differentiating this expression with respect to Q and putting the result over a common denominator yields a ratio whose denominator is positive and whose numerator is a function of \mathbf{Q} i.e.

$$
\begin{aligned}
h(Q)=- & v_{1} v_{2}^{3}\left(v_{1}-1\right)^{2}\left\{\sum_{l=1}^{p} r_{o l}-v_{2} Q\right\}^{2}+v_{1} v_{2} \\
& \left\{v_{1} \sum_{l=1}^{p} \frac{\left(b_{1} k_{1}-v_{2} r_{o l}\right)\left(k_{1}-1\right)}{k_{l}}-v_{2} \sum_{l=1}^{p} r_{o l}+v_{2}^{2} Q\right\}^{2}
\end{aligned}
$$

Coefficient of Q^{2} in $h(Q)$ is $-v_{1}^{2} v_{2}^{5}\left(v_{1}-2\right)$. For coefficient of Q^{2} to be negative, $v_{1}>2$ which is true. Now

$$
\mathrm{Q}=\sum_{\mathrm{l}=1}^{\mathrm{p}} \mathrm{k}_{\mathrm{l}}^{-1} \mathrm{n}_{\mathrm{ol}}^{2} \geq \sum_{\mathrm{l}=1}^{\mathrm{p}} \mathrm{k}_{\mathrm{l}}^{-1} \mathrm{r}_{\mathrm{ol}}^{2} / \mathrm{b}_{\mathrm{l}}=\mathrm{Q}_{\mathrm{l}} \text { (say) }
$$

Since one of the positive eigen value of $P^{\prime} M_{d}^{-} P$ is

$$
v_{1} \lambda\left[\sum_{l=1}^{p} r_{o l}-v_{2} \sum_{l=1}^{p} k_{l}^{-1} n_{o l}^{2}\right] \geq 0
$$

hence $Q \leq \sum_{1=1}^{p} r_{o l} / v_{2}=Q_{2}$ (say)
For $Q_{1} \leq Q \leq Q_{2}, h\left(Q_{1}\right) \geq 0$ and $h\left(Q_{2}\right) \geq 0$, it follows that $h(Q) \geq 0$ for all Q satisfying $Q_{1} \leq Q \leq Q_{2}$. This implies that trace ($\mathrm{P}^{\prime} \mathrm{M}_{\mathrm{d}}^{-} \mathrm{P}$) is increasing in Q and is minimized for fixed $r_{o l}$ when Q is as small as possible. For fixed $r_{o l}, Q$ is minimized when $n_{o l}$ is either $\left[r_{o l} / b_{1}\right]$ or $\left[\mathrm{r}_{\mathrm{ol}} / \mathrm{b}_{\mathrm{l}}\right]+1$.

In view of the above lemmas, another definition of BBPBUB designs is given here which will be useful for searching A-optimal designs.

Definition 4.1 : For $w_{1} \in\left\{0,1, \ldots, k_{1}-1\right\}$ and $q_{1} \in\left\{0,1, \ldots, b_{1}-1\right\}$ for all $1 \leq 1 \leq p$ with atleast one $q_{l}>0$ when $\sum_{i=1}^{p} w_{l}=0$, a design d is a BBPBUB design with parameters $v_{1}, v_{2}, b, k_{1}, \ldots, k_{p} ; w_{1}, \ldots, w_{p}, q_{1}, \ldots, q_{p}$ if it is a BBPBUB design with the additional property that

$$
n_{t j} \in\{0,1\}, t=1, \ldots, v_{1} ; j=1, \ldots, b\left(=\sum_{1=1}^{p} b_{1}\right)
$$

$$
\begin{aligned}
& n_{s l}=\ldots=n_{s q_{1}}=w_{1}+1, s=v_{1}+1, \ldots, v \\
& n_{s\left(q_{1}+1\right)}=\ldots=n_{s b_{1}}=w_{1} \text { for all } l=1, \ldots, p
\end{aligned}
$$

We are now in a position to state the main theorem of this section which will be helpful in obtaining A-optimal designs.

Theorem 4.1 : Let $v_{1}, v_{2}, b, k_{1}, \ldots, k_{p}$ be integers. A BBPBUB $D_{o}\left(v_{1}, v_{2}, b, k_{1}, \ldots, k_{p} ; w_{1}, \ldots, w_{p}, q_{1}, \ldots, q_{p}\right)$ design is A-optimal in the class of all designs with all the controls appearing together equally frequently in a block and with the same values of $v_{1}, v_{2}, b, k_{1}, \ldots, k_{p}$ if

$$
g\left(w_{1}, \ldots, w_{p}, q_{1}, \ldots, q_{p}\right)=\min \left\{g\left(x_{1}, \ldots, x_{p}, z_{1}, \ldots, z_{p}\right), \quad\left(x_{1}, z_{1}\right) \in \Delta\right\}
$$

where $\quad \Delta=\left\{\left(\mathrm{x}_{1}, \mathrm{z}_{1}\right) . \mathrm{x}_{1}=0,1, \ldots,\left[\mathrm{k}_{1} / \mathrm{v}_{2}\right]-1\right.$;

$$
\begin{array}{r}
\left.z_{1}=0,1, \ldots, b_{1} \text { with } z_{1}>0 \text { when } \sum_{1=1}^{p} x_{1}=0,1 \leq l \leq p\right\} \\
g\left(x_{1}, \ldots, x_{p}, z_{1}, \ldots, z_{p}\right)=\frac{v_{1} v_{2}\left(v_{1}-1\right)^{2}}{A\left(x_{1}, \ldots, x_{p}, z_{1}, \ldots, z_{p}\right)}+\frac{v_{1}\left(v_{2}-1\right)}{B\left(x_{1}, \ldots, x_{p}, z_{1}, \ldots, z_{p}\right)}
\end{array}
$$

$$
+\frac{v_{1}}{C\left(x_{1}, \ldots, x_{p}, z_{1}, \ldots, z_{p}\right)}
$$

$A\left(x_{1}, \ldots, x_{p}, z_{1}, \ldots, z_{p}\right)=\sum_{l=1}^{p}\left[a_{l}\left(k_{1}-1\right)-v_{2} c_{1}+v_{2}^{2} e_{1}\right]$
$B\left(x_{1}, \ldots, x_{p}, z_{1}, \ldots, z_{p}\right)=\sum_{l=1}^{p} c_{l} ; C\left(x_{1}, \ldots, x_{p}, z_{1}, \ldots, z_{p}\right)=\sum_{1=1}^{p}\left[c_{1}-v_{2} e_{1}\right]$
with $a_{1}=v_{1} \frac{\left(b_{1} k_{1}-v_{2} b_{1} x_{1}-v_{2} z_{1}\right)}{k_{1}} ; c_{1}=b_{1} x_{1}+z_{1} ; e_{1}=\left(b_{1} x_{1}^{2}+2 x_{1} z_{1}+z_{1}\right) / k_{1}$
Proof : Using the definition 4.1 of BBPBUB design and $w_{1}=x_{1}, q_{1}=z_{1}$, we get $r_{o l}=b_{1} x_{1}+z_{1}, n_{o l}^{2}=b_{1} x_{1}^{2}+2 x_{1} z_{1}+z_{1}$. Using the expression (4.3), the required result is obtained.

A BBPBUB design $d_{1} \in D_{0}$ is a design in v_{1} tests, v_{2} controls arranged in blocks of size k_{1} each. The first q_{1} blocks in d_{1} referred to as d_{11} have
$\left(k_{1}-w_{1}-1\right)$ units each and the remaining $\left(b_{1}-q_{1}\right)$ blocks in d_{1} referred to as d_{21} have $\left(k_{1}-w_{1}\right)$ units each in tests. Therefore it is easily seen that in both d_{11} and d_{21} the tests are equally replicated. Then

$$
\sum_{t=1}^{v_{1}} n_{t 1}=r_{1}, l \in d_{1} \text { and } \sum_{\mathfrak{t}=1}^{v_{1}} n_{t 1}=r_{11}, l \in d_{11}
$$

Now it is easy to establish the following lemma.
Lemma 4.6: For a BBPBUB design $\mathrm{d} \in \mathrm{D}_{0}$, the following relations must hold

$$
\begin{align*}
& v_{1} r_{1}=b_{1}\left(k_{1}-w_{1}\right)-q_{1} ; v_{1} r_{11}=q_{1}\left(k_{1}-w_{1}-1\right) \\
& \lambda_{1 t t a_{\prime}}\left(v_{2}-1\right)=r_{11}\left(k_{1}-w_{1}-2\right)+\left(r_{1}-r_{11}\right)\left(k_{1}-w_{1}-1\right)
\end{align*}
$$

Using Theorem 4.1, a number of A-optimal BBPBUB designs can be obtained. In search for an optimal design with parameters $v_{1}, v_{2}, b, k_{1}, \ldots, k_{p}$, we are led to the following algorithm.

Step 1: Find integers $w_{1}, \ldots, w_{p} ; q_{1}, \ldots, q_{p}$ which minimize the function $g\left(x_{1}, \ldots, x_{p}, z_{1}, \ldots, z_{p}\right)$ given in (4.4).

Step 2 : Verify the necessary conditions (4.6), i.e, check whether the following quantities are integers.

$$
\begin{gathered}
q_{11}=\left[b_{1}\left(k_{1}-w_{1}\right)-q_{1}\right] / v_{1} \\
q_{2 l}=q_{l}\left(k_{1}-w_{1}-1\right) / v_{1}, \forall 1=1, \ldots, p \\
q_{o}\left(v_{1}-1\right)=\prod_{l=1}^{p} k_{1}\left\{\sum_{l=1}^{p}\left[q_{2 l}\left(k_{1}-w_{1}-2\right)+\left(q_{11}-q_{2 l}\right)\left(k_{1}-w_{1}-1\right)\right] / k_{1}\right\}
\end{gathered}
$$

Proceed if q_{11}, q_{21} and q_{0} are integers, otherwise theorem 4.1 cannot be applied.

5. A-efficiency of BBPBUB Designs

In section 4 a sufficient condition is obtained for studying the A- optimality of BBPBUB designs. It is however difficult to give general methods of construction which yields all the designs as A-optimal. Therefore, we look for an indirect approach and settle for a design that, though possibly not A-optimal, performs well under the A-criterion. The A-efficiencies of some of the BBPBUB
designs constructed is computed using the definition of A-efficiency given by Stufken [14].

Definition 5.1: The efficiency $\mathrm{E}(\mathrm{d})$ of a design $\mathrm{d} \in \mathrm{D}$ is defined as

$$
\begin{equation*}
\mathrm{E}(\mathrm{~d})=\frac{\mathrm{d}^{\min \in \mathrm{D}} \operatorname{Trace}\left(\mathrm{P}^{\prime} \mathrm{M}_{\mathrm{d} *}^{-} \mathrm{P}\right)}{\operatorname{Trace}\left(\mathrm{P}^{\prime} \mathrm{M}_{\mathrm{d}}^{-} \mathrm{P}\right)} \tag{5.1}
\end{equation*}
$$

where d^{*} is a hypothetical A-optimal design in D for which trace ($P^{\prime} M_{d}^{-} P$) is minimum. The designs with an efficiency exactly equal to one are termed as A-optimal. The A-efficiencies of some of the BBPBUB designs obtained through method 3.1 in section 3 is computed and the designs are listed in table 1 with $v_{2}^{*}=2$ and average replications of tests and controls ≤ 15. From the table it is clear that most of the designs have high A-efficiency and some of the designs are also A-optimal with efficiency one. There may be some more designs with efficiency greater than those in the given class of designs, but here only those designs are reported which are obtained using the given method of construction.

Discussion : The designs discussed in the present article have been called by different names in literature. Nair and Rao [11] studied these designs under the name of an inter- and intra-group balanced design, Corsten [4] called them as balanced block designs with two different numbers of replicates etc. There is another class of designs called the General Efficiency Balanced (GEB) designs introduced by Das and Ghosh [5]. These designs can be used for comparing a set of tests to a set of controls. In fact all the GEB designs for two sets of treatments are BBPB designs but the converse may not be true always. The optimality problem attempted here involves minimization of average variance of the BLUE of contrasts of interest which is algebraically quite complicated, therefore the condition of all the controls appearing together in the block has been imposed. Efforts are to be made in solving this problem by relaxing this condition. The design for experiment mentioned in section 1 can be obtained by using cyclic design with initial blocks $(1,3,6,10) ;(1,2) ;(1,7)$ developed $\bmod 17$ and taking $\mathrm{j}_{1}=0, \mathrm{j}_{2}=\mathrm{j}_{3}=1, \mathrm{p}=2, \mathrm{w}_{1}=2, \mathrm{w}_{2}=\mathrm{w}_{3}=3$.

[^1]
REFERENCES

[1] Angelis, L. and Moyssiadis, C., 1991. A-optimal incomplete block designs with unequal block sizes for comparing test treatments with a control. J.Statist Plan. Inf., 28, 353-368.
[2] Bechhofer, R.E. and Tamhane, A.C., 1981. Incomplete block designs for comparing treatments with a control, General theory. Technometrics, 23, 45-57.
[3] Clatworthy, W.H., 1973. Tables of two-associate partially balanced designs. National Bureau of Standards, Applied Maths. Series No. 63, Washington D.C.
[4] Corsten, L.C.A., 1962. Balanced block designs with two different numbers of replicates. Biometrics, 18, 499-519.
[5] Das, M.N. and Ghosh, D.K., 1985. Balancing incomplete block designs. Sankhya, B, 47, 67-77.
[6] Dey, A., 1986. Theory of block designs. Wiley Eastern Ltd., New Delhi.
[7] Gupta, S.C. and Jones, B., 1983. Equireplicated balanced block designs with unequal block sizes. Biometrika, 70, 433-440.
[8] Hedayat, A.S., Jacroux, M. and Majumdar, D., 1988. Optimal designs for comparing test treatments with a control. Statist. Sc., 3, 462-491.
[9] Kageyama, S. and Sinha, K., 1988. Some constructions of balanced bipartite block designs. Utilitas Math., 33, 137-162.
[10] Majumdar, D.,1986. Optimal designs for comparisons between two sets of treatments. J. Statist. Plan. Inf., 14, 359-372.
[11] Nair, K.R. and Rao, C.R., 1942. Incomplete block designs for experiments involving several groups of varieties. Science and Culture, 7, 615-616.
[12] Pearce, S.C., 1964. Experimenting with blocks of natural sizes. Biometrics, 20, 699-706.
[13] Sinha, K. and Kegeyama, S., 1990. Further constructions of balanced bipartite block designs. Utilitas Math., 38, 155-160.
[14] Stufken, J., 1988. On bounds for the efficiency of block designs for comparing test treatments with a control. J. Statist. Plan. Inf., 19, 361-372.

[^0]: * Paper adjudged best for Young Scientist Award during 49th annual conference of the society held at Lucknow, U.P. on 22nd, February, 1996.

[^1]:

